SHORT REPORTS

β-L-ASPARTYLGLYCINE FROM THE RED ALGA CERAMIUM RUBRUM

SEBASTIANO SCIUTO, MARIO PIATTELLI and GIUSEPPE IMPELLIZZERI Istituto Dipartimentale di Chimica dell'Università di Catania, Catania, Italy

(Received 27 February 1978)

Key Word Index—Ceramium rubrum; Ceramiaceae; red algae; peptides; β -L-aspartylglycine.

INTRODUCTION

Since the pioneering work of Haas and Hill [1], only a limited number of low MW peptides have been isolated from marine algae. These include eisenine (L-pyrrolid-5-one-2-carbonyl-L-glutaminyl-L-alanine) and fastigiatine (L-pyrrolid-5-one-2-carbonyl-L-glutaminyl-L-glutamine) isolated respectively from the brown seaweeds Eisenia bicyclis [2] and Pelvetia fastigiata [3], L-citrullinyl-L-arginine from the red alga Grateloupia turuturu [4], L-arginyl-L-glutamine from the green algae Enteromorpha linza and Ulva pertusa [5], and a partially characterized pentapeptide of glutamic acid and aspartic acid (or their amides) which has been named analipine after the brown alga, Analipus japonicus [6].

We wish to report here the isolation of a further peptide, β -L-aspartylglycine, from the red alga *Ceramium rubrum* (Huds.) C. Ag. (Ceramiaceae).

RESULTS AND DISCUSSION

This peptide was isolated by ion-exchange chromatography followed by recrystallization in a yield of 0.022 \% of the fr. wt of the alga. The acidic character of the peptide was revealed by its behaviour on ion-exchange resins and during paper electrophoresis ($E_{asp} = 1.05$ at pH 4.5). From the molecular formula and the result of acid hydrolysis it was evident that the isolated compound was a dipeptide of aspartic acid and glycine. Since in the PMR spectrum (determined in D₂O) addition of acid caused a substantial shift of the signal of the proton α to the amino acid function, it was deduced that aspartic acid was the N-terminal amino acid. This was confirmed by converting the peptide into the DNP-derivative, which gave DNP-aspartic acid and glycine on acid hydrolysis. A positive test with sodium hypochlorite and fuchsin [7] favoured the structure of β -aspartylglycine, but the mp values reported in the literature (see Experimental) were quite different from that of the natural peptide. For direct comparison we prepared both isomeric aspartylglycines according to Buchanan et al. [8]. Mp, IR, colour reaction with ninhydrin, and chromatographic and electrophoretic behaviours of β aspartylglycine were in complete agreement with those of the algal compound.

EXPERIMENTAL

Extraction and isolation. Fresh alga (500 g) was homogenized and extracted with EtOH to a final concn of 70%. The extract

was clarified by centrifugation and passage through a column of Dowex 50W-X8 (H+) (400 ml). The resin was washed thoroughly with H₂O and the amino acids eluted with N NH₄OH. The eluate was concd and applied to a column of Dowex 1-X8 (AcO⁻) (300 ml). After washing with H₂O, gradient elution was applied from 0 to 0.5 M HOAc. Fractions containing the peptide, which emerged from the column after aspartic acid and partly overlapped with pyrrolidine-2,4-dicarboxylic acid [9], were pooled and concd to small vol. After standing overnight in the cold, crystals (110 mg) were obtained which, after drying in vacuo at 110° for 4 hr, had mp 230–232° (dec.) (lit.: 153° [10], 190–200° [11]; monohydrate 153–156° [11], 163° [8]), $[\alpha]_D^{20} - 9.6$ ° (c 1 in H₂O), +7.7° (c 1 in H₂O + 1 mol HCl) and +31° (c 1 in 5 N HCl) (lit.: +7.2° (c 2.4 in H₂O + 1 mol HCl) [10], +13.9° (c 2.6 in H₂O + 1 mol HCl) [10], +13.9° (c HCl) [11], $+12.7^{\circ}$ (c 2 in $H_2O + 1$ mol HCl [8]). (Found: C, 38.15; H, 5.27; N, 14.83. Calc. for C₆H₁₀O₅N₂: C, 37.89; H, 5.26; N, 14.74%). PMR (D₂O) δ : 3.0 (ŽH, d, J = 6 Hz), 4.0 (2H, s), 4.14 (1H, t, J = 6 Hz); after addition of CF₂COOD to pH 2 the triplet at δ 4.14 was shifted to 4.33, while the other signals were not affected significantly.

DiMe ester hydrochloride. (MeOH-HCl): δ (D₂O) 3.13 (2H, d, J = 5 Hz), 3.72 and 3.83 (3H each, s), 4.0 (2H, s), 4.5 (1H, t, J = 5 Hz). MS m/e 186 (M⁺ – MeOH), 159 (M⁺ – COOMe), 158 (M⁺ – HCOOMe), 127 (M⁺ – MeOH – COOMe), 70 (M⁺ – COOMe – NHCH₂COOMe).

Acid hydrolysis. Peptide (2 mg) was refluxed with 6N HCl (1 ml) for 1 hr. HCl was removed in vacuo and amino acids converted by standard procedure [12] into N-trifluoroacetyl n-butyl esters. Gas-chromatographic analysis (1.5% OV-17 on 80-100 mesh H.P. Chromosorb G) showed the presence of aspartic acid and glycine in equimolar amounts.

DNP-derivative. Dinitrophenyl derivative of the peptide was prepared by the method of Sanger [13]. Its hydrolysis products on refluxing with 6 H HCl for 1 hr were identified by TLC as DNP-aspartic acid and glycine.

Synthesis of peptide. Synthetic samples of both L-aspartylglycines were obtained according to Buchanan et al. [8]. Dried in vacuo β -L-aspartylglycine had mp 230–232° and $[\alpha]_D^{20}+29^\circ$ (c 1 in 5 N HCl).

REFERENCES

- 1. Haas, P. and Hill, T. G. (1931) Biochem. J. 25, 1472.
- 2. Ohira, T. (1939) J. Agric. Chem. Soc. Japan 15, 370
- Dekker, C. A., Stone, D. and Fruton, J. S. (1949) J. Biol. Chem. 181, 719.
- Miyazawa, K. and Ito, K. (1974) Bull. Jpn Soc. Sci. Fish. 40, 815.
- Miyazawa, K., Ito, K. and Matsumoto, F. (1976) J. Fac. Fish. Animal Husbandry Hiroshima Univ. 15, 161.
- Takagi, M., Iida, A., Murayama, H. and Soma, S. (1973) Bull. Jpn Soc. Sci. Fish. 39, 961.

- 7. Frehden, O. and Goldschmidt, L. (1937) Mikrochim. Acta 2, 186.
- Buchanan, D. L., Haley, E. E., Dorer, F. E. and Corcoran, B. J. (1966) *Biochemistry* 5, 3240.
- 9. Impellizzeri, G., Piattelli, M., Sciuto, S. and Fattorusso, E. (1977) Phytochemistry 16, 1601.
- Grassman, W. and Schneider, W. (1934) Biochem. Z. 273, 452.
- 11. Le Quesne, W. J. and Young, G. T. (1952) J. Chem. Soc., 24.
- 12. Roach, D. and Gehrke, C. W. (1969) J. Chromatogr. 44, 269.
- 13. Sanger, F. (1945) Biochem. J 39, 507.

Phytochemistry, 1978, Vol. 17, pp. 1660-1661 @ Pergamon Press Ltd. Printed in England

0031-9422 78 0901 1660 \$02 00:0

DIALLYL DI-, TRI- AND TETRASULPHIDE FROM ADENOCALYMMA ALLIACEAE

M. APPARAO*, A. KJÆR†, J. Ø. MADSEN† and E. VENKATA RAO*

*Department of Pharmaceutical Sciences, Andhra University, Waltair 530 003, India; †Institute of Organic Chemistry, The Technical University of Denmark, 2800 Lyngby, Denmark

(Received 10 March 1978)

Key Word Index—Adenocalymma alliaceae; Bignoniaceae; diallyl disulphide; diallyl trisulphide; diallyl tetrasulphide; 1-octen-3-ol.

Abstract—The essential oil from flowers and leaves of Adenocalymma alliaceae (Bignoniaceae) consists almost entirely of diallyl di-, tri-and tetra-sulphide, a mixture formerly encountered within the Allium genus but never before convincingly recognized within the class of dicotyledonous angiosperms.

INTRODUCTION

In 1911, Peckolt [1] drew attention to the garlic odour of the leaves of the Brazilian species Adenocalymma sagotii Bur. et K. Sch. ('Cipó d'alko'), Bignoniaceae, used by the native population in combating infections. We now report the results of a study by GC-MS of the odoriferous principles in fresh leaves and flowers of A. alliaceae Mart.

RESULTS AND DISCUSSION

When concentrated ethereal extracts of steam distillates of fresh leaves of A. alliaceae were subjected to GLC, a remarkably simple pattern appeared, essentially consisting of four peaks, numbered 1-4 in the order of increasing retention time; the relative peak heights were ca 1:5:5:1. In the flower distillate, only peaks nos. 2-4, in an unchanged ratio, were prominent.

The MS characteristics of the compounds, represented by peaks nos. 1-4, are summarized in Table 1. From these data their structures can be unequivocally established as 1-octen-3-ol(1), diallyl disulphide (2), diallyl trisulphide (3), and diallyl tetrasulphide (4). The eight most promin-

Me·[CH₂]₄·CH(OH)·CH:CH₂

1

H,CCH·CH,·[S],·CH,CH:CH,

2, n = 2

3, n = 3 4, n = 4

H,C:CH·CH,·S(O)·S·CH,·CH:CH,

5

H,C:CH·CH,·S(O)·CH,·CH(NH;)·CO;

6

ent peaks in the MS of fraction no. 1 (Table 1) are identical with those reported for 1-octen-3-ol [3], a widespread alcohol within the plant kingdom. More interest is associated with the sulphur constituents (2)-(4). About 85 years ago, Semmler [4] established the presence of 2, 3, and, tentatively, 4 in garlic oil (Allium satirum). The finding of 2 and 3 in garlic has been repeatedly confirmed and extended to other species of the genus Allium [5, 6]. The unambiguous recognition of diallyl di-, tri-, and tetra-sulphide (2)-(4) in volatiles from a dicotyledon, however, appears to be without precedent. The alleged occurrence of 2 in asafoetida, an oleoresin from Ferula species [7], we consider doubtful in view of the detailed studies recently performed on asafoetida volatiles in the Danish laboratory and elsewhere [8, and refs. therein]. Again, the suggested presence of 2 in volatiles from Descurainia sophia (Cruciferae) [9] rests on unconvincing evidence.

In Allium sp., 2 and 3 derive from allicin (5) which, in its turn, results from enzymic fission of alliin (6) [6, and refs. therein]. It would be of considerable interest to know whether an identical chemical apparatus is operating within dicotyledonous taxa. Studies towards this goal are in progress.